
DISBi Documentation
Release 0.0.2

Rüdiger Frederik Busche

Jul 17, 2019

Programmer’s Guide

1 Setting up Django 3
1.1 Setting up a virtual environment . 3
1.2 Setting up the database . 3

2 Setting up a DISBi App 5
2.1 Installation and Configuration . 5
2.2 Using the DISBi framework . 7

3 Setting up the production environment 17
3.1 Going into production with Docker (recommended) . 17
3.2 Going into production with Apache . 17

4 Contributing 19
4.1 Design Goals . 19
4.2 Style Guide . 20

5 Using the Filter View 21

6 Using the Data View 23

7 Using the Admin interface 25
7.1 Uploading data for BiologicalModels . 25
7.2 Uploading data for MeasurementModels . 26

8 disbi package 27
8.1 Subpackages . 27
8.2 Submodules . 28

Python Module Index 47

Index 49

i

ii

DISBi Documentation, Release 0.0.2

DISBi is a flexible framework for setting up Django apps for managing experimental and predicted data from Systems
Biology projects. A DISBi app presents an integrated online environment, that helps your team to manage the flood
of data and share it across the project. DISBi dynamically adapts to its data model at runtime. Therefore, it offers a
solution for the needs of many different types of projects. DISBi is open source and freely available.

Features

• Automatic constructions of a Filter interface, that allows you to find exactly the experiments you’re interested
in.

• Integration of related biological objects and the associated experimental data in the Data View. Data can be
further filtered and downloaded in various formats.

• Preliminary analysis directly in the browser. Fold changes can be calculated and exported with the rest of the
data. Histograms of the distributions of data and scatter plots comparing experiments can be generated with one
button press.

• Flexible abstract data model. Specify a data model that meets the requirement of your project. DISBi will figure
out the relations between the models and necessary steps to integrate the data at runtime.

• Adapt the admin interface to handle large datasets. With the DISBi framework the admin can be easily config-
ured to allow uploads and export of large datasets using common formats such as CSV or Excel.

To get an impression of what DISBi can do for you, see the following screenshots:

Fig. 1: A screenshot of the filter view that helps in choosing the experiments of interest.

Programmer’s Guide 1

DISBi Documentation, Release 0.0.2

Fig. 2: A screenshot of the integrated data in an interactive table in the Data View.

Fig. 3: A screenshot of a histogram and scatter plot, generated form transcriptome data.

2 Programmer’s Guide

CHAPTER 1

Setting up Django

If you are new to Django, it is recommended to take the tutorial. If you have worked with Django, but not in conjunc-
tion with a virtual environment or PostgreSQL, you can use the documentation as an opinionated guide. Programmers
who have a Django environment with PostgreSQL already running can skip this part.

1.1 Setting up a virtual environment

To encapsulate your project dependencies, it is recommended to use a virtual environment. A convenient way to do
this is to use Conda, but any environment manager will do. For a lightweight installation in production, you should
use the Miniconda distribution.

Find the installer appropriate for your distribution at http://conda.pydata.org/miniconda.html and downlaod it, e.g.:

$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

Then install from the command line. If you decide to use conda update it first:

$ conda update conda

Then create a new environment for DISBi:

$ conda create -n disbienv python=3.6

1.2 Setting up the database

A DISBi app requires PostgreSQL as database backend. This section describes how to install Postgres and set up a
new user and a new database that will be used to store the data of your DISBi app.

3

https://docs.djangoproject.com/en/1.10/intro/
https://docs.python.org/3/glossary.html#term-virtual-environment
http://conda.pydata.org/docs/
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
https://www.postgresql.org/

DISBi Documentation, Release 0.0.2

1.2.1 Installation with Docker (recommended)

The easiest way to set up a database is to use docker. If docker is not installed on your system you need to installed it.

1. Install Docker Engine.

2. Install Docker Compose.

Then clone the django-disbi repository:

$ git clone https://github.com/DISBi/django-disbi.git

go into the boilerplate directory and start the containers.:

$ cd django-disbi/boilerplate/db
$ docker-compose up -d

That’s it! You now have a postgres instance running on localhost:5432. By default a database with the name
disbi_db is created that is accessible by the user disbi_user with password dataintegration. You change
these defaults by modifying the .env file in the same directory.

In addition to to postgres, Adminer is startet on localhost:8080. Adminer is a lightweight database admin
interface, so you can check what is going on in your database. You can log in with the credentials from above,
specifying db as the server.

1.2.2 Manual installation

Note that it is not necessary, but only convenient to create the new user as a superuser.

Install compiler:

$ sudo apt-get install gcc

Install Postgres server and client:

$ sudo apt-get install postgresql postgresql-client libpq-dev

Login as postgres user:

$ sudo -u postgres psql postgres

From the Postgres shell create a new superuser:

CREATE ROLE <disbi_admin> SUPERUSER LOGIN;

And set a password:

ALTER USER <disbi_admin> WITH PASSWORD '<passwd>';

Exit the Postgres shell and create a database for DISBi:

$ sudo -u postgres createdb <disbidb>

4 Chapter 1. Setting up Django

https://docs.docker.com/install/
https://docs.docker.com/compose/install/

CHAPTER 2

Setting up a DISBi App

This guide describes both how to install DISBi and configure your Django project correctly, as well as how to use the
DISBi framework to set up an app for your Systems Biology project.

2.1 Installation and Configuration

First you should install DISBi via pip.

Install from PyPI to get the latest release:

$ pip install django-disbi

Or install directly from GitHub to get the latest development version:

$ pip install -e git+https://github.com/disbi/django-disbi.git#egg=django-disbi

Once installed, you can create a new project for setting up a DISBi app or incorporate it in one of your existing
projects.

Start project:

$ django-admin startproject <disbi_project>

Start app:

$ python manage.py startapp <organism>

Next you need to adapt a few options in your project’s settings.py.

Add DISBi itself, your newly created DISBi app and import_export into intalled apps. DISBi uses django-import-
export to enable uploads of data via Excel and CSV files:

5

https://github.com/django-import-export/django-import-export
https://github.com/django-import-export/django-import-export

DISBi Documentation, Release 0.0.2

INSTALLED_APPS = [
'disbi', # put app first to customize admin CSS
'organism.apps.OrganismConfig',
'import_export',
...

]

For import_export the following configuration is recommended to wrap uploads in transactions and skip the
admin log, which speeds up the upload process:

IMPORT_EXPORT_USE_TRANSACTIONS = True
IMPORT_EXPORT_SKIP_ADMIN_LOG = True

For global configuration of DISBi apps in your project the following settings are required. JOINED_TABLENAME is
the name of the backbone table that is used for caching. DATATABLE_PREFIX is the prefix added to each cached
datatable. SEPARATOR determines how values in experiments comparing condintions are separated. For example, a
microarray experiment comparing the two mutants mutA and mutB could be specified in the admin as mutA/mutB,
given the settings below. EMPTY_STR is an internal variable used to represent the empty option in case of combined
experiments. It only needs to be replaced if the minus sign has another meaning in your experiments. For example, to
specify an experiments that compares mutA to the wildtype, mutA/- could be given in the admin.

Custom DISBi Settings
DISBI = {

'JOINED_TABLENAME': 'joined_bio_table',
'DATATABLE_PREFIX': 'datatable',
'SEPARATOR': '/',
'EMPTY_STR': '-',

}

Then you set up the connection to your Postgres database:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': '<disbidb>',
'USER': '<disbi_admin>',
'PASSWORD': '<passwd>',
'HOST': '127.0.0.1', # Or an IP Address that your DB is hosted on
'PORT': '5432',

}
}

Now you need to set up directories and URLs for serving static files and collect those files for import_export.

Set up MEDIA_ROOT and URL and STATIC_ROOT and URL:

MEDIA_ROOT = '/home/disbi/media/disbi/'
MEDIA_URL = '/media/'
STATIC_ROOT = os.path.join('/home/disbi/disbi/project/disbi/static')
STATIC_URL = '/static/'

If you decide to use some of the custom templates from the boilerplate, you need to add the directories they are
included in to your template directories. For example, if you include the templates at the project’s root you need to
add:

6 Chapter 2. Setting up a DISBi App

https://docs.djangoproject.com/en/1.10/howto/static-files/#serving-files-uploaded-by-a-user

DISBi Documentation, Release 0.0.2

TEMPLATES = [
{

...,
'DIRS': [os.path.join(BASE_DIR, 'templates'),],
...,

},
]

Then let Django collect it static files:

$ python manage.py collectstatic

Now you are free to set up your models, admin, views and URLs. While the view and URLs can be simply copied
from the boilerplate, models and admin are more complex and need to be adapted to your project’s needs. A detailed
description of how to configure them is available in Specifying a data model. Once you are finished with configuring
the models and the admin, you can migrate your app, create an admin superuser and other accounts and let people start
to upload their experimental data.

Make migrations and migrate:

$ python manage.py makemigrations
$ python manage.py migrate

Create a new Django superuser for the admin:

$ python manage.py createsuperuser

Verify that everything works as expected with the development server:

$ python manage.py runserver

2.2 Using the DISBi framework

To make DISBi useful for wide range of projects, it is designed rather as a framework than an an application. Though
it in fact is a Django app, that handles some basic tasks, it mostly provides you with classes that help you set up an
application that meets your requirements. In this section we walk you through the necessary steps to set up a DISBi
app by constructing a simple app that integrates data from flux balance predictions and metabolome analysis.

2.2.1 Specifying a data model

The data model defines what kind of information is stored in your app and how this information interrelates. DISBi
uses extended versions of Django Models and Fields for the specification of its data model. Though DISBi will adapt
dynamically to your data model at runtime, it requires the data model to conform to an overall general structure, the
abstract data model. The abstract data model is an attempt at generalizing the structure of data from the domain of
Systems Biology or experimental data in general. It does so by grouping models into three abstract categories and a
concrete model: BiologicalModel, MeasurementModel, MetaModel and Experiment.

Every source of data (simulation or real experiment) is stored in the Experiment model, with its respective param-
eters. MeasurementModels store the data points generated in these experiments. BiologicalModels store
biological objects to which data points map and MetaModels store information about these biological objects.

As you can see in the entity relationship model in Fig. 2.1, each data point from the MeasurementModels can be
uniquely identified by mapping to exactly one experiment and one instance of a BiologicalModel.

2.2. Using the DISBi framework 7

DISBi Documentation, Release 0.0.2

Fig. 2.1: Entity relationship model for relations between the model groups in DISBi’s abstract data model.

8 Chapter 2. Setting up a DISBi App

DISBi Documentation, Release 0.0.2

Let’s consider how we would construct models for a DISBi app that integrates flux and metabolome data.

First we need to consider what parameters we will vary in our experiments and simulations. To keep things simple, we
will say that we only use different carbon sources and different mutants. Additionally, we should store the type of the
experiment, i.e. flux or metabolome, and the date it was performed on. Moreover, we will leave some space for notes.

models.py
import disbi.disbimodels as dmodels
from disbi.models import (BiologicalModel, DisbiExperiment,

DisbiExperimentMetaInfo, MetaModel,
MeasurementModel,)

class Experiment(models.Model, DisbiExperiment):
EXPERIMENT_TYPE_CHOICES = (

('flux', 'Predicted Flux'),
('metabolome', 'Metabolome'),

)
experiment_type = dmodels.CharField(max_length=45,

choices=EXPERIMENT_TYPE_CHOICES,
di_choose=True)

carbon_source = dmodels.CharField(max_length=45, blank=True,
di_choose=True, di_show=True)

mutant = dmodels.CharField(max_length=45, blank=True, di_choose=True,
di_show=True)

date = dmodels.DateField(max_length=45)
notes = dmodels.TextField(blank=True)

def __str__(self):
return '{}. {}'.format(

self.id,
self.get_experiment_type_display()

)

Your Experiment needs to be constructed by mixing in DisbiExperiment to the standard Django Model
class. As you notice, we imported and used dmodels.FieldClass instead of the standard Django models.
FieldClass. These are extended versions of Django field classes, that allow for some DISBi specific options to be
passed, which always start with di_. Otherwise they work as the standard Django classes. Let’s have a look at what
those options do:

• di_choose Determines whether a select widget will be created for this field in the Data View. Since we only
want to filter by experiment type, carbon source and mutant, we only need to set the attribute on those fields.

• di_show Determines whether the field will be shown in the tables summarizing the matched experiments in
the filter view. In addition to these fields, the __str__() method of the Experiment class will be included
in the table. Since __str__() includes the experiment type already, we don’t need to include it again.

Next we could override the result_view() method, that determines the content of the table summarizing the
matched experiments in the data view. However, this is only necessary if would want to include information that is not
directly in the Experiment models fields, such as hyperlinks. So we just leave it untouched, such that it will yield
the same table as in the Data View.

Finally, we need to add a class called ExperimentMetaInfo. This class handles determining the
MeasurementModel and BiologicalModel for each experiment. We only have to create it by using a MixIn.
No further customization is required.

class ExperimentMetaInfo(Experiment, DisbiExperimentMetaInfo):

pass

2.2. Using the DISBi framework 9

DISBi Documentation, Release 0.0.2

Now we want to set up models that store information about the biological objects we measure in our experiments,
the BiologicalModels. We will map the flux data to Reactions and the metabolome data to Metabolites. We
will relate a reaction to a metabolite, whenever a metabolite occurs in the reaction equation of a reaction. This is a
many-to-many relation:

class Reaction(BiologicalModel):
name = dmodels.CharField(max_length=255, unique=True, di_show=True,

di_display_name='reaction_name')
reaction_equation = dmodels.TextField()
metabolite = dmodels.ManyToManyField('Metabolite', related_name='reactions')

def __str__(self):
return self.name

class Metabolite(BiologicalModel):
name = dmodels.CharField(max_length=512, unique=True, di_show=True,

di_display_name='metabolite_name')

def __str__(self):
return self.name

As you notice, both classes derive from BiologicalModel. This is done to identify them as
BiologicalModels for DISBi. Moreover, you see a new field option.

• di_display_name This option is the name by which the field will be included in the result table. It only
makes sense to be set if di_show is set to True, but has to be set if the normal field name collides with field
names of other models. Otherwise, the columns would be indistinguishable in the result table. (Notice that both
Reaction and Metabolite have a name attribute.)

• di_show This option has a different meaning for BiologicalModels. It determines whether or not the
field should be included in the result table.

When constructing your BiologicalModels it is always important to keep in mind the granularity of your mea-
surement data. For example, you should not use a Metabolite model to map data from a measurement method that
can only resolve groups of derivatives. Instead you should create a new Derivative model to which you map your
data and relate it to your Metabolite model, such that each Derivative is related to each Metabolite it can
derive from.

Now we also want to store more information about our Reactions. For example we could store all biochemical
pathways in which the reaction occurs. This is a perfect case for a MetaModel:

class Pathway(MetaModel):
name = dmodels.CharField(max_length=255, unique=True, di_show=True,

di_display_name='pathway')
reaction = dmodels.ManyToManyField('Reaction', related_name='reactions')

def __str__(self):
return self.name

Notice that we could not have stored this information as a field on the original Reactionmodel, since many reactions
can occur in many pathways and vice versa. The relation is therefore many-to-many.

As a final step we need to set up our MeasurementModels. These models need to reflect the data generated by
our methods. Moreover, we need to include an explicit reference to the BiologicalModel the data maps to. The
reference to the Experiment model is already included in the base class. Let’s assume that our flux balance analysis
program gives us a flux value and an upper and lower bound for this value. Let’s further assume that we perform our
metabolome method in triplets, so that we only store the mean and the standard error of each sample. This could be
encoded in the models as follows:

10 Chapter 2. Setting up a DISBi App

DISBi Documentation, Release 0.0.2

class FluxData(MeasurementModel):
flux = dmodels.FloatField(di_show=True)
flux_min = dmodels.FloatField(di_show=True, di_display_name='lb')
flux_max = dmodels.FloatField(di_show=True, di_display_name='ub')

reaction = dmodels.ForeignKey('Reaction', on_delete=models.CASCADE)

class Meta:
unique_together = (('reaction', 'experiment',))
verbose_name_plural = 'Fluxes'

def __str__(self):
return 'Flux data point'

class MetabolomeData(MeasurementModel):
mean = dmodels.FloatField(di_show=True)
stderr = dmodels.FloatField(di_show=True)

metabolite = dmodels.ForeignKey('Metabolite', on_delete=models.CASCADE)

class Meta:
unique_together = (('metabolite', 'experiment'),)
verbose_name_plural = 'Metabolome data points'

def __str__(self):
return 'Metabolome data point'

If we look at our data model as a whole, we can see that it has all the features demanded by the abstract data model.

Congratulations, you have just finished making your first DISBi data model. DISBi data models can grow
much more complex than described here. You can map more than one MeasurementModel to the same
BiologicalModel or no MeasurementModel at all. You can also have more complex relation between
your BiologicalModels. The only requirement is that the graph formed by the relations between your
BiologicalModels and MetaModels is a tree, i.e. every model needs to be reachable from every other model
and their must be no circles. This is due to the way DISBi automatically joins the data behind the scenes.

2.2.2 Configuring the admin

Once you have figured out your data model, you need to set up an admin interface so that researches can easily upload
their data. Though you have full freedom in customizing the Django admin, DISBi provides a few usefull classes to
set up an admin that’s suitable for handling experimental datasets.

In general you’ll want one Admin class for each of your model classes. Since normal Django ModelAdmins just
offer an HTML form to enter new data, DISBi uses django-import-export to enable data upload of larger datasets from
files, like CSV and Excel. The handling of the file upload is mostly done by a Resource class. DISBi offers the
factory function disbiresource_factory() that produces a Resource class that checks data integrity before
inserting the value into the database. It is recommended, though not necessary to use the factory. The admin classes
for our BiologicalModels could look like this:

admin.py
from import_export.admin import ImportExportModelAdmin
from django.contrib import admin
from disbi.admin import (DisbiDataAdmin, disbiresource_factory)
from .models import (Experiment, FluxData, MetabolomeData,

Metabolite, Reaction, Pathway)
(continues on next page)

2.2. Using the DISBi framework 11

http://django-import-export.readthedocs.io/en/latest/

DISBi Documentation, Release 0.0.2

Fig. 2.2: Entity relationship model for the concrete data model.

12 Chapter 2. Setting up a DISBi App

DISBi Documentation, Release 0.0.2

(continued from previous page)

@admin.register(Reaction)
class ReactionAdmin(ImportExportModelAdmin):

resource_class = disbiresource_factory(
mymodel=Reaction,
myfields=('name', 'reaction_equation',

'metabolite',),
myimport_id_fields=['name'],
mywidgets={'metabolite':

{'field': 'name'}}
)
search_fields = ('name', 'reaction_equation',)
filter_horizontal = ('metabolite',)

@admin.register(Metabolite)
class MetaboliteAdmin(ImportExportModelAdmin):

resource_class = disbiresource_factory(
mymodel=Metabolite,
myfields=('name',),
myimport_id_fields=['name'],

)
search_fields = ('name',)

Let’s look more closely at the arguments of disbiresource_factory().

• mymodel is the Model class the Resource is created for. This is the same class that is registered for the
admin.

• myfields are the fields that will be imported from the uploaded file and therefore have to be present as
columns in the file. The list should include all fields that were set in models.py.

• myimport_id_fields is the human readable primary key that serves for identifying the rows in the up-
loaded file as objects in the database. Though Django uses numerical ids internally, researchers don’t talk about
reactions and metabolites in terms of numbers. With this option, you can also specify compound keys (a key
that consist of more than one field) and update data by changing values in your data file and re-uploading it.

• mywidgets is a dictionary, that passes Meta options to the Widget class used in the import. That is especially
important when importing a foreign key, as the identifying attributes of the other Model have to be put here.

The configuration of the admin class for our Pathway model follows the same principle:

@admin.register(Pathway)
class PathwayAdmin(ImportExportModelAdmin):

resource_class = disbiresource_factory(
mymodel=Pathway,
myfields=('name', 'reaction',),
myimport_id_fields=['name'],
mywidgets={'reaction':

{'field': 'name'}}
)
search_fields = ('name',)
filter_horizontal = ('reaction',)

Now lets turn to our MeasurementModels. These pose a special challenge since researchers usually will produce
one file per experiment. This way, each file will have to contain a column with the same value for the same experiments.
To save users from the tedious process of appending a column to each file, DISBi offers a special admin class. It gives
the user the opportunity to choose the experiment the data belongs to at the time the file is uploaded. This class only

2.2. Using the DISBi framework 13

https://django-import-export.readthedocs.io/en/latest/api_widgets.html#import_export.widgets.Widget

DISBi Documentation, Release 0.0.2

has to be configured with our concrete Experiment model. A pattern we’ll encounter again when setting up the
views.

class MeasurementAdmin(DisbiMeasurementAdmin):
model_for_extended_form = Experiment

Then we can use it as a base class to define the admin classes for our MeasurementModels:

@admin.register(FluxData)
class FluxAdmin(MeasurementAdmin):

resource_class = FluxResource

filter_for_extended_form = {'experiment_type': 'flux'}

list_display = ('reaction', 'flux', 'flux_min', 'flux_max',)
search_fields = ('reaction__reaction_equation', 'reaction__name',)

@admin.register(MetobolomeData)
class MetabolomeDataAdmin(MeasurementAdmin):

resource_class = disbiresource_factory(
mymodel=MetobolomeData,
myfields=('metabolite', 'mean', 'stderr', 'experiment',),
myimport_id_fields=['metabolite', 'experiment'],
mywidgets={'metabolite':

{'field': 'name'},}
)

filter_for_extended_form = {'experiment_type': 'metabolome'}

list_display = ('metabolite', 'mean',)

Note that we don’t have to specify how the experiments should be identified in mywidgets as this will be handled
by the MeasurementAdmin class. We also set a the class-level attribute filter_for_extended_form. This
dictionary will be passed as keyword arguments to the filter() on the Experiment model. It determines which
of the stored experiments are eligible. It makes sense to limit those to the experiments of the corresponding type.
MeasurementAdmin will also add a filter in the admin site for each MeasurementModel, so the data points can
be filtered by the experiments they belong to.

Finally, we need an admin class for our Experiment model. This can be kept simple. Let’s only set the save_as
option to allow users to use existing experiments as templates for creating new entries:

@admin.register(Experiment)
class ExperimentAdmin(admin.ModelAdmin):

save_as = True
save_as_continue = False

Now you’ve gone through the difficult part of configuring your DISBi app. You’ll be good to go after a few final steps.

2.2.3 Setting up views and URLs

The configuration of the views and URLs is simply boilerplate code. DISBi uses class-based views to allow for easy
configuration. The idea is that you subclass this views and configure them with your concrete Experiment model,
as DISBi cannot know about your model by itself. However, since the code will always look the same you can simply
copy it:

14 Chapter 2. Setting up a DISBi App

DISBi Documentation, Release 0.0.2

views.py
from disbi.views import (DisbiCalculateFoldChangeView, DisbiComparePlotView,

DisbiDataView, DisbiDistributionPlotView,
DisbiExperimentFilterView, DisbiExpInfoView,
DisbiGetTableData)

from .models import Experiment, ExperimentMetaInfo

class ExperimentFilterView(DisbiExperimentFilterView):
experiment_model = Experiment

class ExperimentInfoView(DisbiExpInfoView):
experiment_model = Experiment

class DataView(DisbiDataView):
experiment_meta_model = ExperimentMetaInfo

class CalculateFoldChangeView(DisbiCalculateFoldChangeView):
experiment_model = Experiment
experiment_meta_model = ExperimentMetaInfo

class ComparePlotView(DisbiComparePlotView):
experiment_model = Experiment
experiment_meta_model = ExperimentMetaInfo

class DistributionPlotView(DisbiDistributionPlotView):
experiment_model = Experiment
experiment_meta_model = ExperimentMetaInfo

class GetTableData(DisbiGetTableData):
experiment_meta_model = ExperimentMetaInfo

Unless you want to modify some of the views, it is not really important to know what they do exactly. More information
can be found in the API documentation.

The configuration of the URLs is similarly fixed. You simply need to associate your views with the right URL patterns.
As the views often take arguments from the URL patterns, you should not try to change them. The simplest thing is
again to stick to the boilerplate code:

urls.py
from django.conf.urls import url
from . import views

app_name = 'yourapp'
urlpatterns = [

url(r'^filter/exp_info/', views.ExperimentInfoView.as_view(), name='exp_info'),
url(r'^filter/', views.ExperimentFilterView.as_view(), name='experiment_filter'),
url(r'^data/(?P<exp_id_str>\d+(?:_\d+)*)/get_distribution_plot/',

views.DistributionPlotView.as_view(),
name='get_distribution_plot'),

url(r'^data/(?P<exp_id_str>\d+(?:_\d+)*)/get_compare_plot/',

(continues on next page)

2.2. Using the DISBi framework 15

DISBi Documentation, Release 0.0.2

(continued from previous page)

views.ComparePlotView.as_view(),
name='get_compare_plot'),

url(r'^data/(?P<exp_id_str>\d+(?:_\d+)*)/calculate_fold_change/',
views.CalculateFoldChangeView.as_view(),
name='fold_change'),

url(r'^data/(?P<exp_id_str>\d+(?:_\d+)*)/get_table_data/',
views.GetTableData.as_view(),
name='get_table_data'),

url(r'^data/(?P<exp_id_str>\d+(?:_\d+)*)/$', views.DataView.as_view(), name='data
→˓'),
]

Then you only need to include your apps URLs in your project’s urls.py and your done.

This was a quick tour through what you can accomplish with DISBi and how to do it. To help getting started even
faster, there is a complete boilerplate available on GitHub.

If you encounter any problems when setting up your DISBi app, feel free to contact us on GitHub and open an
issue. We are happy to hear your experiences, so we can continuously improve and extend DISBi in the way the
research community needs it. If you want to help to improve DISBi yourself, you can find all necessary information
in Contributing.

16 Chapter 2. Setting up a DISBi App

CHAPTER 3

Setting up the production environment

Once you have successfully set up your DISBi application and verified that everything works as intended, you will
want to make DISBi available to all people from your Systems Biology project. To do this, you need to move from the
development to a production environment.

3.1 Going into production with Docker (recommended)

In the root of the django-disbi repository you find a docker-compose.yml that should serve as a good
starting point for a production ready container system. Basically, you should only have to adapt the entry.sh to run
your app instead of the demo app.

You will also have to adapt the settings.py file for production:

DEBUG = False
ALLOWED_HOSTS = ['www.myhost.org']

Enable whitenoise for serving static files.
MIDDLEWARE_CLASSES = [
'whitenoise.middleware.WhiteNoiseMiddleware',
'django.middleware.security.SecurityMiddleware',
...
]

3.2 Going into production with Apache

This is a guide for using Apache Server on Debian/Ubuntu as a production server. Any other production environment
or server recommended by the Django documentation will do as well.

Install Apache:

17

https://docs.djangoproject.com/en/1.11/howto/deployment/
https://httpd.apache.org/

DISBi Documentation, Release 0.0.2

$ sudo apt-get install apache2 apache2-dev

Download mod_wsgi, but look for newer version on https://github.com/GrahamDumpleton/mod_wsgi/releases:

$ wget https://github.com/GrahamDumpleton/mod_wsgi/archive/4.5.7.tar.gz
$ tar xvfz 4.5.7.tar.gz

Install from source:

$./configure --with-python=</path/to/env/>
$ make
$ sudo make install

Enable mod_wsgi with Debian script:

$ sudo a2enmod wsgi

Set WSGIPythonHome, in apache2.conf.

See http://modwsgi.readthedocs.io/en/develop/user-guides/installation-issues.html in case of problems.

Set WSGIPythonHome, in apache2.conf, see also https://docs.djangoproject.com/en/1.10/howto/deployment/
wsgi/modwsgi/.

Set up a virtual host by using the template from the boilerplate.

Enable vhost and reload the server:

$ a2ensite disbi.conf
$ service apache2 reload

If error occurs, probably tkinter is missing:

$ sudo apt-get install python3-tk

Preparing for production by adapting settings.py:

DEBUG = False
ALLOWED_HOSTS = ['myhost']

18 Chapter 3. Setting up the production environment

http://modwsgi.readthedocs.io/en/develop/index.html
https://github.com/GrahamDumpleton/mod_wsgi/releases
http://modwsgi.readthedocs.io/en/develop/user-guides/installation-issues.html
https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/modwsgi/
https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/modwsgi/

CHAPTER 4

Contributing

DISBi is an open source project released under MIT License. Everybody is welcome to contribute! There is always a
need for better documentation, cleaner code and new features. To ensure long term code quality and consistency here
are a few guidelines that you should heed when committing code to the project.

4.1 Design Goals

DISBi aims at presenting a general solution for data integration in Systems Biology. To do this the software pursues
several goals.

• Data model independence To be able to adapt to the diverse requirements of different projects, all features
should rely only on the abstract data model.

• Data management Data should be easy to manage through the admin interface. Moreover, the data should be
made accessible through user friendly filter interfaces, that do not require knowledge of the underlying
database structure.

• Data integration Data should be made available in an integrated manner that facilitates further analysis and
discovery of underlying patterns. Moreover, one should be able to export the integrated data in commonly
used formats.

• Preliminary analysis DISBi tries to support the researcher by automating common analysis routines. These
should help in identifying data that is worthwhile for more in depth analysis. However, DISBi tries not
to replicate the full functional scope of mature data analysis tools. Instead, it tries to give the user the
freedom to export data in interchangeable formats and let him choose his own analysis tool.

If you have a contribution that surpasses the scope of the Design Goals, but is useful nevertheless, you should consider
designing your contribution as a pluggable extension.

19

DISBi Documentation, Release 0.0.2

4.2 Style Guide

4.2.1 Python

Try to follow and PEP 8 the Google Style Guide as closely as possible. Everything should have at least a one-line
docstring. Use Google Style for longer docstrings.

4.2.2 JavaScript

In general, follow the recommendations of the jQuery style guide and code examples presented in the jQuery docu-
mentation.

4.2.3 Sass

Follow the recommendations of the Sass styleguide by Hugo Giraudel.

PEP8

20 Chapter 4. Contributing

https://www.python.org/dev/peps/pep-0008
https://google.github.io/styleguide/pyguide.html
http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://contribute.jquery.org/style-guide/js/
https://sass-guidelin.es/
https://www.python.org/dev/peps/pep-0008/

CHAPTER 5

Using the Filter View

The Filter View provides you with an interface to find the experiments you’re interested in based on experimental
conditions. This way you can choose your experiments of interest, before you actually query the database for the
experimental data.

You find a select widget for each experimental parameter. Whenever you change the options you selected, the table
summarizing the matched experiments will be updated. For example, if you want all metabolome experiments with
carbon source glucose, you will get the following result.

If you are interested in more than one value for the same parameter, you can simply add another select box using the +
button. This way you can for example find all metabolome and transcriptome experiments in which glucose was used
as carbon source.

Note that multiple values for the same parameter are connected by a logical OR and values for different parameters
are connected by a logical AND when looking for matching experiments. The above input, for example, would be
equivalent to the expression:

Experiments with (type metabolome OR type transcriptome) AND carbon source glucose

In order to find experiments that compare two conditions you need to select both values in the respective parameter.
For example, to find the proteome experiment that compares fucose to glucose as carbon source you need to select the
following:

21

DISBi Documentation, Release 0.0.2

Selecting only fucose or glucose as carbon source would not match the experiment.

Finally, you have the option to directly select experiments with the experiment tab. Experiments select in this tab get
added to the set of matched experiments, regardless of the other selected parameters. This way you can, for example,
add a single flux simulation that uses fucose as carbon source to the transcriptome and metabolome experiments that
use glucose. Adding only a single experiments would be otherwise difficult if there are many flux experiments that
use fucose.

Once you are satisfied with the matched experiments you can click “QUERY DATABASE”, which will take you to
the Data View.

22 Chapter 5. Using the Filter View

CHAPTER 6

Using the Data View

Assuming you selected all transcriptome and metabolome experiments with glucose or fucose as carbon source, you
would be presented the following in the Data View.

At the top you see a table summarizing the matched experiments again. Then you can see some widgets that allow
you to perform some preliminary analysis. We return to them later.

Farther down on the page is the data table that contains the actual integrated experimental data. The biological
index, i.e. the biological objects the data map to, always precedes the numerical data for every type of experiment.
Every column is suffixed with the id of the experiments it belongs to. The data is integrated in the way that loci and
metabolites that are related to each other (e.g. by the encoded enzymes) appear in the same row. This leads of course
to partial duplication of data if one locus is related to many metabolites.

The data table is searchable and columns can be completely hidden using the Column visisbility tab. The data
can also be copied to the clipboard or exported as CSV or Excel. Hidden columns and data that was filtered out with
the search will not be exported.

23

DISBi Documentation, Release 0.0.2

The distribution of every column can be plotted as a histogram using the button at the bottom of the column. To plot a
scatter plot comparing two experiments, the widget above the table can be used. The generated plots will be appended
to the bottom of the page. You can remove them again simply by clicking on them.

Fold changes can be calculated and added to the table using the other widget above the table. If you are interested in
multiple fold changes at the same time you can add more rows for specifying the experiments to be compared.

24 Chapter 6. Using the Data View

CHAPTER 7

Using the Admin interface

The Admin interface presents you a page for each Model that contains data in the database. You can browse the
entries, add new ones or change existing ones using simple forms.

For uploading larger datasets, the Admin interface (or short Admin) is equipped with support for spreadsheet upload.

7.1 Uploading data for BiologicalModels

When you go the the IMPORT tab on a model’s page you are prompted to upload a file and specify the file format.
The page also shows you the fields that will be imported. For an exemplary Locus model the page could look like
this:

The required fields must be included as column in the spreadsheet file you upload. As one locus can be related
to many reaction, all related reaction must be present in the reaction column, separated by commas. A valid for
uploading Locus data could look like this:

Exemplary table for the data upload to the Locus model (data from Sulfolobus solfataricus).

25

DISBi Documentation, Release 0.0.2

lo-
cus_tag

product ec_numberreaction

SSO0299transketolase 2.2.1.1 carb_ppp_2TRANSKETO-RXN,carb_ppp_2.2.1.1_1TRANSKETO-
RXN,cof_thiamin_plp_2.2.1.7_DXS-RXN

SSO0302Chorismate mutase 5.4.99.5 aa_tyr_PREPHENATEDEHYDROG-RXN
SSO03043-deoxy-7- phosphoheptu-

lonate synthase
2.5.1.54 aa_phe_tyr_trp_shiki_DAHPSYN-RXN

SSO03053-dehydroquinate synthase 4.2.3.4 aa_phe_tyr_trp_shiki_3-DEHYDROQUINATE-SYNTHASE-
RXN

SSO0306shikimate dehydrogenase 1.1.1.25 aa_phe_tyr_trp_shik_RXN-7968_NADP
SSO0307chorismate synthase 4.2.3.5 aa_phe_tyr_trp_shiki_CHORISMATE-SYNTHASE-RXN
SSO0308shikimate kinase 2.7.1.71 aa_phe_tyr_trp_shiki_SHIKIMATE-KINASE-RXN
SSO03093-phosphoshikimate 1-

carboxyvinyl transferase
2.5.1.19 aa_phe_tyr_trp_shiki_2.5.1.19-RXN

SSO03113-dehydroquinate dehy-
dratase

4.2.1.10 aa_phe_tyr_trp_shiki_3-DEHYDROQUINATE-
DEHYDRATASE-RXN

Note that the first row contains two entries for reaction.

7.2 Uploading data for MeasurementModels

Uploading actual experimental data follows the same principle as uploading biological data. The only difference is
that you need to choose the experiment the data belongs to at the moment you upload it. Therefore you do not need to
include an experiment column in your spreadsheet, even though it is listed as a field that is going to be imported.

Whenever your uploaded data does not make it through the validation process, you will be informed about what went
wrong in which row of the dataset. This helps to ensure that the data stored in the database remains consistent.

26 Chapter 7. Using the Admin interface

CHAPTER 8

disbi package

8.1 Subpackages

8.1.1 disbi.migrations package

Submodules

disbi.migrations.0001_initial module

class disbi.migrations.0001_initial.Migration(name, app_label)
Bases: django.db.migrations.migration.Migration

dependencies = []

initial = True

operations = [<CreateModel name='Checksum', fields=[('id', <django.db.models.fields.AutoField>), ('table_name', <django.db.models.fields.CharField>), ('checksum', <django.db.models.fields.CharField>)]>, <RunSQL 'CREATE OR REPLACE FUNCTION divide_without_zeroerr(a float, b float) RETURNS float AS $$\n BEGIN\n IF b = 0 THEN\n RETURN NULL;\n ELSE\n RETURN a/b;\n END IF;\n END;\n $$ LANGUAGE PLPGSQL;'>]

8.1.2 disbi.templatetags package

Custom template tags and filters used in DISBi templates.

Submodules

disbi.templatetags.custom_filters module

disbi.templatetags.custom_filters.get_item(dictionary, key)

disbi.templatetags.custom_filters.get_item_by_idx(iters, idx)

disbi.templatetags.custom_filters.get_list(qdict, key)

27

DISBi Documentation, Release 0.0.2

disbi.templatetags.custom_template_tags module

disbi.templatetags.custom_template_tags.nested_dict_as_table(d, make_foot,
**kwargs)

Render a list of dictionries as HTML table with keys as footer and header.

Parameters d – A list of dictionries. Use an OrderedDict for the table to maintain order.

Keyword Arguments **kwargs – Valid HTML Global attributes, which will be added to the
<table> tag.

disbi.templatetags.custom_template_tags.print_none(obj)

8.2 Submodules

8.2.1 disbi.admin module

Useful admin classes and factory function that can be used to configure the admin of the concrete app.

class disbi.admin.DisbiMeasurementAdmin(model, admin_site)
Bases: disbi._import_export.admin.RelatedImportExportModelAdmin

Allow measurement models to be filtered by their related experiments.

filter_for_extended_form = None

list_filter = (('experiment', <class 'django.contrib.admin.filters.RelatedOnlyFieldListFilter'>),)

list_per_page = 30

media

disbi.admin.dataframe_replace_factory(replace)
Factory for creating a mixin that replaces entries globally in an uploaded dataset.

Parameters replace (tuple) – A 2-tuple with the old and the new value.

Returns Dataset – The new dataset with the replaced values.

disbi.admin.disbiresource_factory(mymodel, myfields, myimport_id_fields, mywidgets=None)
Return a resource class with the given meta options and the validation hook.

disbi.admin.inline_factory(proxy, inline_type=’tabular’)
Create an inline class from a proxy Model.

Parameters proxy (Model) – The proxy or just the normal model from which the inline class is
created.

Keyword Arguments inline_type (str) – The type of Inline that should be created. Defaults
to ‘tabular’.

Returns InlineModelAdmin – The created class.

Raises ValueError

8.2.2 disbi.apps module

class disbi.apps.DisbiConfig(app_name, app_module)
Bases: django.apps.config.AppConfig

name = 'disbi'

28 Chapter 8. disbi package

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

DISBi Documentation, Release 0.0.2

8.2.3 disbi.cache_table module

Handles the caching of joined tables in the DB.

disbi.cache_table.check_for_table_change(exp_model, check_for)
Wrapper for checking whether data in DB tables has changed.

Parameters check_for (str) – Either bio for checking all tables that belong to
BiologicalModel or data for checking all tables that belong to MeasurementModel.

disbi.cache_table.check_table(dbtables)
Check whether DB tables changed since the last time.

Parameters dbtables (iterable of str) – The tables that should be checked.

Returns bool – True if at least one table changed, else False.

disbi.cache_table.drop_datatables(app_label)
Drop all cached datatables.

Parameters app_label (str) – The name of the app the tables belong to.

disbi.cache_table.get_table_names_by_pattern(pattern)
Get all tables from DB that match a pattern.

Parameters pattern (str) – An SQL string or pattern with placeholders.

Returns tuple – The matched table names.

disbi.cache_table.reconstruct_backbone_table(app_label)
Reconstruct the prejoined backbone table of the biological models.

8.2.4 disbi.db_utils module

Helper functions for performing operations circumventing the ORM layer.

disbi.db_utils.db_table_exists(table_name)
Check whether a table with a specific name exists in the DB.

Parameters table_name (str) – The name of the table to check for.

Returns bool – True if the table exists, else False.

disbi.db_utils.dictfetchall(cursor)
Return all rows from a cursor as a dict.

disbi.db_utils.exec_query(sql, parameters=None)
Execute a plain SQL query.

Use parameterized query if parameters are given.

Parameters sql (str) – The SQL query.

Keyword Arguments parameters (iterable) – An iterable of parameters, that will be au-
toescaped.

disbi.db_utils.from_db(sql, parameters=None, fetch_as=’ordereddict’)
Fetch values from the DB, given a SQL query.

Parameters sql (str) – The SQL statement.

Keyword Arguments

8.2. Submodules 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DISBi Documentation, Release 0.0.2

• parameters – Parameters for a parametrized query. If given sql must contain the appro-
priate palceholders. Defaults to None.

• fetch_as (str) – The data type as which the values should be fetched. Choices are
‘ordereddict’, ‘dict’, ‘namedtuple’ and ‘tuple’.

Raises ValueError – If a unrecognized value for fetch_as is given.

disbi.db_utils.get_columnnames(table_name)
Get the column names of a DB table.

Parameters table_name (str) – The name of the table.

Returns tuple – The column names.

disbi.db_utils.get_field_query_name(model, field)
Format the DB column name of a field with the DB table of its model.

disbi.db_utils.get_fk_query_name(model, related_model)
Format the DB column name of a foreign key field of a model with the DB table of the model. Finds the foreign
key relating to related model automatically, but assumes that there is only one related field.

Parameters

• model (Model) – The model for which the foreign key field is searched.

• related_model (Model) – A model related to model.

Returns str – The formated foreign key column name.

disbi.db_utils.get_m2m_field(intermediary_model, related_model)
Get the field of an intermediary model, that constitutes the relation to related_model.

disbi.db_utils.get_pk_query_name(model)
Format the primary key column of a model with its DB table.

disbi.db_utils.namedtuplefetchall(cursor)
Return all rows from a cursor as a namedtuple.

disbi.db_utils.ordereddictfetchall(cursor)
Return all rows from a cursor as an OrdredeDict.

8.2.5 disbi.disbimodels module

Normal Django models with a few custom options for configuration.

If you have custom model classes that need these options, add them here and create a child class of the appropriate
options class and your custom model class.

class disbi.disbimodels.BigIntegerField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.BigIntegerField

BigIntegerField with custom DISBi options.

class disbi.disbimodels.BinaryField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.BinaryField

BinaryField with custom DISBi options.

30 Chapter 8. disbi package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

DISBi Documentation, Release 0.0.2

class disbi.disbimodels.BooleanField(di_exclude=False, di_show=False,
di_display_name=None, di_hr_primary_key=False,
di_choose=False, di_combinable=False, *args,
**kwargs)

Bases: disbi.disbimodels.ExcludeOptions, django.db.models.fields.BooleanField

BooleanField with custom DISBi and exclude options.

class disbi.disbimodels.CharField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.CharField

CharField with custom DISBi options.

class disbi.disbimodels.CommaSeparatedIntegerField(di_show=False,
di_display_name=None,
di_hr_primary_key=False,
di_choose=False,
di_combinable=False, *args,
**kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.
CommaSeparatedIntegerField

CommaSeparatedIntegerField with custom DISBi options.

class disbi.disbimodels.DateField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.DateField

DateField with custom DISBi options.

class disbi.disbimodels.DateTimeField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.DateTimeField

DateTimeField with custom DISBi options.

class disbi.disbimodels.DecimalField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.DecimalField

DecimalField with custom DISBi options.

class disbi.disbimodels.DurationField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.DurationField

DurationField with custom DISBi options.

class disbi.disbimodels.EmailField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.EmailField

EmailField with custom DISBi options.

8.2. Submodules 31

DISBi Documentation, Release 0.0.2

class disbi.disbimodels.EmptyCharField(di_empty=None, di_show=True,
di_display_name=None, di_hr_primary_key=False,
di_choose=False, di_combinable=False, *args,
**kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.CharField

FloatField with custom DISBi options and the option to add an empty value displayer.

class disbi.disbimodels.ExcludeOptions(di_exclude=False, di_show=False,
di_display_name=None, di_hr_primary_key=False,
di_choose=False, di_combinable=False, *args,
**kwargs)

Bases: disbi.disbimodels.Options

Adds the exclude option, to exclude rows where this field evaluates to False. Should be only used on Bool fields.

class disbi.disbimodels.FileField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.files.FileField

FileField with custom DISBi options.

class disbi.disbimodels.FilePathField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.FilePathField

FilePathField with custom DISBi options.

class disbi.disbimodels.FloatField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.FloatField

FloatField with custom DISBi options.

class disbi.disbimodels.ForeignKey(to, di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.RelationshipOptions, django.db.models.fields.
related.ForeignKey

ForeignKey with custom DISBi options.

class disbi.disbimodels.GenericIPAddressField(di_show=False, di_display_name=None,
di_hr_primary_key=False,
di_choose=False, di_combinable=False,
*args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.
GenericIPAddressField

GenericIPAddressField with custom DISBi options.

class disbi.disbimodels.ImageField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.files.ImageField

ImageField with custom DISBi options.

32 Chapter 8. disbi package

DISBi Documentation, Release 0.0.2

class disbi.disbimodels.IntegerField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.IntegerField

IntegerField with custom DISBi options.

class disbi.disbimodels.ManyToManyField(to, di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.RelationshipOptions, django.db.models.fields.
related.ManyToManyField

ManyToManyField with custom DISBi options.

class disbi.disbimodels.NullBooleanField(di_exclude=False, di_show=False,
di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.ExcludeOptions, django.db.models.fields.
NullBooleanField

NullBooleanField with custom DISBi and exclude options.

class disbi.disbimodels.OneToOneField(to, di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.RelationshipOptions, django.db.models.fields.
related.OneToOneField

OneToOneField with custom DISBi options.

class disbi.disbimodels.Options(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: object

class disbi.disbimodels.PositiveIntegerField(di_show=False, di_display_name=None,
di_hr_primary_key=False,
di_choose=False, di_combinable=False,
*args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.
PositiveIntegerField

PositiveIntegerField with custom DISBi options.

class disbi.disbimodels.PositiveSmallIntegerField(di_show=False,
di_display_name=None,
di_hr_primary_key=False,
di_choose=False,
di_combinable=False, *args,
**kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.
PositiveSmallIntegerField

PositiveSmallIntegerField with custom DISBi options.

class disbi.disbimodels.RelationshipOptions(to, di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: object

8.2. Submodules 33

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

DISBi Documentation, Release 0.0.2

class disbi.disbimodels.SlugField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.SlugField

SlugField with custom DISBi options.

class disbi.disbimodels.SmallIntegerField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.SmallIntegerField

SmallIntegerField with custom DISBi options.

class disbi.disbimodels.TextField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.TextField

TextField with custom DISBi options.

class disbi.disbimodels.TimeField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.TimeField

TimeField with custom DISBi options.

class disbi.disbimodels.URLField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.URLField

URLField with custom DISBi options.

class disbi.disbimodels.UUIDField(di_show=False, di_display_name=None,
di_hr_primary_key=False, di_choose=False,
di_combinable=False, *args, **kwargs)

Bases: disbi.disbimodels.Options, django.db.models.fields.UUIDField

UUIDField with custom DISBi options.

8.2.6 disbi.exceptions module

Custom DISBI exceptions.

exception disbi.exceptions.NoRelatedMeasurementModel(exp, *args, **kwargs)
Bases: Exception

Raise if an experiment has no data attached to it.

exception disbi.exceptions.NotFoundError
Bases: Exception

Raise if a value for a variable could not be set.

exception disbi.exceptions.NotSupportedError
Bases: Exception

Raise if a requested operation is not supported.

34 Chapter 8. disbi package

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

DISBi Documentation, Release 0.0.2

8.2.7 disbi.experiment_filter module

Functions for filtering the experiments based on conditions.

disbi.experiment_filter.combine_conditions(conditions, combinable_conditions)
Apply combine_on_sep() to each value in a dictionary.

Parameters conditions (dict) – Dictionary with a list of condition values.

Returns dict – A dictionary with the same keys and lists of combined values.

disbi.experiment_filter.combine_on_sep(items, separator)
Combine each item with each other item on a separator.

Parameters

• items (list) – A list or iterable that remembers order.

• separator (str) – The SEPARATOR the items will be combined on.

Returns list – A list with all the combined items as strings.

disbi.experiment_filter.get_experiments_by_condition(conditions, experiment_model)
Return a set of experiments that match the conditions.

Parameters conditions (dict) – A dictionary with conditions as keys and a list of values.

Returns set – A set of experiments that match the conditions.

disbi.experiment_filter.get_requested_experiments(formset_list, experiment_model)
Return all experiments that match the request from the form.

Parameters formset_list (list) – Formsets containing POST data.

Returns set – The union of the set of the directly requested experiments and those that matched the
requested conditons.

disbi.experiment_filter.lookup_format(dic)
Return a dictionary readily useable for filter kwargs.

Parameters dic (dict) – The dictionary to be formatted.

Returns dict – The same dictionary with the keys concatenated with ‘__in’

8.2.8 disbi.forms module

Forms used throughout the DISBi app.

disbi.forms.construct_direct_select_form(model)
Construct a form for directly selecting model instances.

Parameters model (models.Model) – A Django model, for which the form is constructed.

disbi.forms.construct_foreign_select_field(model, field)
Construct a form for directly selecting related model instances.

Parameters

• model (models.Model) – A Django model, for which the form is constructed.

• field (fields.related.ForeignKey) – The field of the realated instances.

disbi.forms.construct_forms(experiment_model)
Wrapper for construct_modelfieldsform with appropriate arguments.

8.2. Submodules 35

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

DISBi Documentation, Release 0.0.2

disbi.forms.construct_modelfieldsform(model, exclude=[’id’], direct_select=False)
Construct forms based on a model and available values in the DB.

Parameters model (models.Model) – A Django model, for which the forms are constructed.

Keyword Arguments

• exclude (iterable) – Fields for which no forms should be constructed.

• direct_select (bool) – Determines whether a form for directly selecting model in-
stances is constructed.

Returns list – A list of namedtuples with the form classes and the prefix.

disbi.forms.foldchange_form_factory(experiments)
Create a form with two fields for selecting experiments.

The fields are select widgets allowing to calculate a fold change between the two.

Parameters experiments (Queryset) – The selectable experiments.

Returns Form – The constructed form.

disbi.forms.make_ChoiceField(model, attribute, label=None, empty_choice=None)
Return a ChoiceField and the maxiumn number of choices.

The ChoiceField contains all distinct values of an attribute of model. Addtionally a NULL option is inserted as
first choice.

Parameters

• model (Model) – The model from which the field should be constructed.

• attribute (Field) – The attribute of the model.

• label (str) – The label used when displaying the form (default None).

• empty_choice (tuple) – 2-tuple of a value label pair, used for enabling the user to
choose an empty condition, e.g. no stress.

Returns ChoiceField – A Choicefield based on the available options in the DB. int: The number of
availablbe options.

Raises IndexError – Raises error when no entries are found in the DB.

8.2.9 disbi.join module

Contains the class Relations that stores relations between models and joins them together appropriately.

class disbi.join.Relations(app_label, model_superclass=None)
Bases: object

Stores relations of models and has the ability to join them.

create_joined_table()
Execute the the SQL JOIN and create a table thereof.

get_related_metamodels(model)
Get all models related to model of a superclass.

is_tree
Determine whether the relation_map is a tree.

Perform some setup and then call the depth first search, starting from an arbitrary node.

36 Chapter 8. disbi package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#object

DISBi Documentation, Release 0.0.2

Returns bool – True if the graph is a tree. If it contains at least on cycle or is not connected,
return False.

start_join()
Start the join process between all models.

8.2.10 disbi.models module

class disbi.models.BiologicalModel(*args, **kwargs)
Bases: django.db.models.base.Model

Baseclass for clustering the biological entities.

class Meta
Bases: object

abstract = False

class disbi.models.Checksum(*args, **kwargs)
Bases: django.db.models.base.Model

Model for storing the checksums of other tables for checking whether data has changed.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

checksum
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

table_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class disbi.models.DisbiExperiment
Bases: object

Mixin for managing experiments.

result_view()
Creates a row with information that should be displayed in the data view. Override in your app, if you need
specific information in the table.

Returns OrderedDict – Contains the information for one row of the result table.

view()
Construct an OrderedDict based on a tuple of column names.

Each column name is either expected to be a method or an attribute of the object. For the keys of the dict,
the short_description is preferred. For attributes verbose_name is preferred over name.

Parameters cols (tuple) – The column names.

Returns OrderedDict – The external representation or view of the experiment object.

8.2. Submodules 37

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple

DISBi Documentation, Release 0.0.2

class disbi.models.DisbiExperimentMetaInfo(*args, **kwargs)
Bases: object

Mixin for Experiment proxy model, that fetches additionaly information about the experiment when instantiated.

class Meta
Bases: object

proxy = True

class disbi.models.MeasurementModel(*args, **kwargs)
Bases: django.db.models.base.Model

Base class for clustering the measurement models.

class Meta
Bases: object

abstract = False

experiment
Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

experiment_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class disbi.models.MetaModel(*args, **kwargs)
Bases: django.db.models.base.Model

Baseclass for clustering the entities with meta information.

Meta informations are considered here as entities that can not be measured in an experiment.

class Meta
Bases: object

abstract = False

8.2.11 disbi.option_utils module

Module for treating the custom DISBi options attached to the model fields.

disbi.option_utils.get_display_name(field)
Get the name used to display a field in the external representation.

Parameters field (Field) – The respective field.

Returns str – The display_name used for external representation.

disbi.option_utils.get_models_of_superclass(app_label, model_superclasses, intermedi-
ary=False)

Get all the models that derive from one superclass and include the intermediary models for N:M related models.

Parameters

38 Chapter 8. disbi package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

DISBi Documentation, Release 0.0.2

• app_label (str) – The label of the app the models live in.

• model_superclasses (iterable of type) – The classes from which all models
of interest derive.

Keyword Arguments intermediary (bool) – Determines whether models should be included.

Returns list – All models that derive from mode_superclass. Plus their intermediary models that are
no proxys if intermediary is True.

8.2.12 disbi.result module

Class for getting the joined table with data based on a list of experiments.

class disbi.result.DataResult(requested_experiments, experiment_meta_model)
Bases: object

Constructs the datatable based on the request from the filter view.

DB_FUNCTION_ZERO = 'divide_without_zeroerr'

DB_PRECISION = "'9.9999EEEE'"

add_foldchange(exps_for_fc, fetch_as=’ordereddict’)
Add the fold change to a base table.

construct_SELECT_AS(exp)
Construct part of a SQL statement for alias DB columns with their display name.

Parameters exp (Experiment) – The experiment.

Returns str – The partial statement for aliasing the columns.

construct_base_table()
Construct the SQL statement for creating the base table.

Returns str – The SQL statement for creating the base table.

construct_exptable(exp)
Construct the subquery for producing selection of all data points mapping to one experiment.

Only data points which foreign key matches the experiment will be selected. Data points for which an
exclude column evaluates to False will be excluded.

Parameters exp (disbimodels.Experiment) – The experiment for which the data is se-
lected.

Returns str – A SQL statement for the selection of the datapoints.

construct_result_table(biomodels)
Construct the SQL statement for getting the result table.

For each biological model, the respective experiments will be filtered. For those experiments a subquery
is constructed, that is then LEFT JOINed into the prejoined backbone table. Only rows that have at least
one data point are preserved.

Parameters biomodels (list) – List of Biological models.

Returns str – The SQL statement for the result table.

create_base_table(table_name)
Create the base table and write it to the DB.

Parameters table_name (str) – The name under which the table should be created.

8.2. Submodules 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

DISBi Documentation, Release 0.0.2

Returns None – This is a procedure.

get_colnames(model)
Get a list of all DB columns with di_show=True.

Parameters model (models.Model) – The model for which the fields are retrieved.

Returns list – A list of strings with the DB column names.

get_display_names(exp)
Get the display names for the columns of a MeasurementModel of an experiment.

Parameters exp (Experiment) – The experiment.

Returns tuple – A tuple of strings containing the display names suffixed by the experiment id.

get_exp_columns(wanted_exps)
Get column of respective experiment.

get_foldchange(exps_for_fc)
Get only the fold change column.

get_notnull_column(exp)
Get a column that can not be NULL and will be shown.

Parameters exp (Experiment) – The experiment for which the column should be retrieved.

Returns

models.Field –

The first field that will be shown and is neither NULL or blank.

Raises NotFoundError

get_or_create_base_table(fetch_as=’ordereddict’)
Retrieve the base table from the DB. Create it if it does not exist.

Returns The values fetched from the DB.

get_show_columns(model)
Get a list of DB columns that should be shown in the result table.

Parameters model (models.Model) – A Django model with custom DISBI options.

Returns list – List of strings containing the DB column names of the fields to be shown.

wrap_in_func(func, *cols)
Pass column names as arguments to DB function.

8.2.13 disbi.utils module

Some utility functions used throughout the DISBi app.

disbi.utils.camelize(string, uppercase_first_letter=True)
Convert a string with underscores to a camelCase string.

Inspired by inflection.camelize() but even seems to run a little faster.

Parameters

• string (str) – The string to be converted.

• uppercase_first_letter (bool) – Determines whether the first letter of the string
should be capitalized.

40 Chapter 8. disbi package

https://inflection.readthedocs.io/en/latest/index.html#inflection.camelize
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

DISBi Documentation, Release 0.0.2

Returns str – The camelized string.

disbi.utils.clean_set(cleaned_formset_data)
Return a dictionary with keys from POST and lists as values.

The cleaned_data of a formset is a list of dictionaries that can have overlapping keys. The function changes that
into a dictionary where each key corresponds to list of values that belonged to the same key.

Returns dict – Dictionary with items joined on keys.

disbi.utils.construct_none_displayer(entries, placeholder=’-’)
Return a string to be used as a placeholder for an empty option.

The length of the placeholder is based on the length of the longest option in a list of entries.

disbi.utils.get_choices(choice_tup, style=’db’)
Return the choices given on a model Field.

Parameters choice_tup – The choice tuple given in the model.

Keyword Arguments style – Determines whether the human readable “display” values should
be returned or those from the “db”.

disbi.utils.get_hr_val(choices, db_val)
Get the human readable value for the DB value from a choice tuple.

Parameters

• choices (tuple) – The choice tuple given in the model.

• db_val – The respective DB value.

Returns The matching human readable value.

disbi.utils.get_id_str(objects, delimiter=’_’)
Get a string of sorted ids, separated by a delimiter.

Parameters objects (Model) – An iterable of model instances.

Keyword Arguments delimiter (str) – The string the ids will be joined on.

Returns str – The joined and sorted id string.

disbi.utils.get_ids(string, delimiter=’_’)
Get sorted ids.

disbi.utils.get_optgroups(choice_tup, style=’db’)
Parse the choices given on a model Field and map them to their groups.

Parameters choice_tup – The choice tuple given in the model.

Keyword Arguments style – Determines whether the human readable “display” values should
be returned or those from the “db”.

Returns dict – A list of choices mapped to their optgroup.

disbi.utils.get_unique(items)
Get a list of unique items, even for non hashable items.

disbi.utils.merge_dicts(a, b)
Merge two dicts without modifying them inplace.

Parameters

• a (dict) – The first dict.

• b (dict) – The second dict. Overrides a on conflicts.

8.2. Submodules 41

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DISBi Documentation, Release 0.0.2

Returns dict – A merged dictionary.

disbi.utils.object_view(obj, cols)
Construct an external representation of an object based on a tuple of field/column names.

Each column name is either expected to be a method or an attribute of the object. For the keys of the dict, the
short_description is preferred. For attributes verbose_name is preferred over name.

Parameters

• obj – Any object with cols as attributes.

• cols (tuple) – The column names.

Returns OrderedDict – The headers as keys and the entries as values.

disbi.utils.remove_optgroups(choices)
Remove optgroups from a choice tuple.

Parameters choices (tuple) – The choice tuple given in the model.

Returns The n by 2 choice tuple without optgroups.

disbi.utils.reverse_dict(dic)
Return a reversed dictionary.

Each former value will be the key of a list of all keys that were mapping to it in the old dict.

disbi.utils.sort_by_other(sequence, order)
Order a list a another list that contains the desired order.

Parameters

• sequence (list) – The list that is ordered. All items must be contained in order.

• order (list) – The list containing the order.

Returns list – The sequence ordered according to order.

disbi.utils.zip_dicts(a, b)
Merge two dicts, choose none empty value on key conflicts.

The dicts are not modified inplace, but returned.

Parameters

• a (dict) – The first dict.

• b (dict) – The second dict. Overrides a on conflicts, when both values are none emtpy.

Returns dict – A merged dictionary.

8.2.14 disbi.validators module

This file collects field validators that are common to the domain of systems biology.

disbi.validators.ec_validator = <django.core.validators.RegexValidator object>
Validator for normal EC numbers.

disbi.validators.short_ec_validator = <django.core.validators.RegexValidator object>
Validator for stunted EC numbers like ‘1.1.-‘.

disbi.validators.validate_flux(value)
Validate that a value is in [-1000, 1000].

42 Chapter 8. disbi package

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DISBi Documentation, Release 0.0.2

disbi.validators.validate_probabilty(value)
Validate that a value is in [0, 1].

8.2.15 disbi.views module

DISBi views that need to subclassed and configured with the appropriate experiment models by a concrete app.

class disbi.views.DisbiCalculateFoldChangeView(**kwargs)
Bases: django.views.generic.base.View

View for calculating the fold change between two experiments.

experiment_meta_model = None

experiment_model = None

post(request, exp_id_str)
Return new data for the datatable with new columns for calculated fold changes.

Parameters

• request – The WSGI request.

• exp_id_str – The ids of all requested experiments from the table view joined on “_”.

Returns JSONResponse – The new data for the datatable or the error message.

class disbi.views.DisbiComparePlotView(**kwargs)
Bases: django.views.generic.base.View

View for generating a scatter plot that compares two experiments.

experiment_meta_model = None

experiment_model = None

post(request, exp_id_str)
Get the scatter plot comparing two experiments.

If the data model of the two experiments matches, a plot is generated, else an error message is raised.

Parameters

• request – The WSGI request.

• exp_id_str – The ids of all requested experiments from the table view joined on “_”.

Returns JSONResponse – The plot image SVG or the error message.

class disbi.views.DisbiDataView(**kwargs)
Bases: django.views.generic.base.View

View for creating the the basic data view without the data table.

experiment_meta_model = None

get(request, exp_id_str)
View for creating and displaying the result table.

Parameters

• request – The WSGI request.

• exp_id_str – The ids of all requested experiments from the table view joined on “_”.

Returns TemplateResponse – The template for the data view with the appropriate form and the
result table with information about the experiments.

8.2. Submodules 43

DISBi Documentation, Release 0.0.2

class disbi.views.DisbiDistributionPlotView(**kwargs)
Bases: django.views.generic.base.View

View for generating a histogram of the distribution of a column in the data table.

experiment_meta_model = None

experiment_model = None

post(request, exp_id_str)
Get the distribution of a column as a histogram.

If a non fold change column is plotted the matching data is fetched from the DB with the ORM. If a fold
change column is selected, a new DataResult object is instantiated and only the fold change column is
retrieved from the result table cached in the DB.

Parameters

• request – The WSGI request.

• exp_id_str – The ids of all requested experiments from the table view joined on “_”.

Returns JSONResponse – The plot image SVG or the error message.

class disbi.views.DisbiExpInfoView(**kwargs)
Bases: django.views.generic.base.View

View for getting information about the experiments in the preview table.

experiment_model = None

post(request)
Get information about matched experiments.

Parameters request – The WSGI request.

Returns JSONResponse – JSON object with number of matched experiments and a HTML table
with information about those experiments.

class disbi.views.DisbiExperimentFilterView(**kwargs)
Bases: django.views.generic.base.View

View for showing dynamic formsets, allowing to choose all combinations.

experiment_model = None

get(request)

Returns TemplateResponse – The rendered forms without initial data.

post(request)
HttpResponseRedirect: For valid POST requests the client will be redirected to the appropriate data view.

class disbi.views.DisbiGetTableData(**kwargs)
Bases: django.views.generic.base.View

View for initially getting the data for the datatable.

experiment_meta_model = None

get(request, exp_id_str)
Return new data for the datatable with new columns for calculated fold changes.

Parameters

• request – The WSGI request.

• exp_id_str – The ids of all requested experiments from the table view joined on “_”.

44 Chapter 8. disbi package

DISBi Documentation, Release 0.0.2

Returns JSONResponse – The data for the datatable.

8.2. Submodules 45

DISBi Documentation, Release 0.0.2

46 Chapter 8. disbi package

Python Module Index

d
disbi, 27
disbi.admin, 28
disbi.apps, 28
disbi.cache_table, 29
disbi.db_utils, 29
disbi.disbimodels, 30
disbi.exceptions, 34
disbi.experiment_filter, 35
disbi.forms, 35
disbi.join, 36
disbi.migrations, 27
disbi.migrations.0001_initial, 27
disbi.models, 37
disbi.option_utils, 38
disbi.result, 39
disbi.templatetags, 27
disbi.templatetags.custom_filters, 27
disbi.templatetags.custom_template_tags,

28
disbi.utils, 40
disbi.validators, 42
disbi.views, 43

47

DISBi Documentation, Release 0.0.2

48 Python Module Index

Index

A
abstract (disbi.models.BiologicalModel.Meta at-

tribute), 37
abstract (disbi.models.MeasurementModel.Meta at-

tribute), 38
abstract (disbi.models.MetaModel.Meta attribute), 38
add_foldchange() (disbi.result.DataResult

method), 39

B
BigIntegerField (class in disbi.disbimodels), 30
BinaryField (class in disbi.disbimodels), 30
BiologicalModel (class in disbi.models), 37
BiologicalModel.Meta (class in disbi.models), 37
BooleanField (class in disbi.disbimodels), 30

C
camelize() (in module disbi.utils), 40
CharField (class in disbi.disbimodels), 31
check_for_table_change() (in module

disbi.cache_table), 29
check_table() (in module disbi.cache_table), 29
Checksum (class in disbi.models), 37
checksum (disbi.models.Checksum attribute), 37
Checksum.DoesNotExist, 37
Checksum.MultipleObjectsReturned, 37
clean_set() (in module disbi.utils), 41
combine_conditions() (in module

disbi.experiment_filter), 35
combine_on_sep() (in module

disbi.experiment_filter), 35
CommaSeparatedIntegerField (class in

disbi.disbimodels), 31
construct_base_table() (disbi.result.DataResult

method), 39
construct_direct_select_form() (in module

disbi.forms), 35
construct_exptable() (disbi.result.DataResult

method), 39

construct_foreign_select_field() (in mod-
ule disbi.forms), 35

construct_forms() (in module disbi.forms), 35
construct_modelfieldsform() (in module

disbi.forms), 35
construct_none_displayer() (in module

disbi.utils), 41
construct_result_table()

(disbi.result.DataResult method), 39
construct_SELECT_AS() (disbi.result.DataResult

method), 39
create_base_table() (disbi.result.DataResult

method), 39
create_joined_table() (disbi.join.Relations

method), 36

D
dataframe_replace_factory() (in module

disbi.admin), 28
DataResult (class in disbi.result), 39
DateField (class in disbi.disbimodels), 31
DateTimeField (class in disbi.disbimodels), 31
DB_FUNCTION_ZERO (disbi.result.DataResult at-

tribute), 39
DB_PRECISION (disbi.result.DataResult attribute), 39
db_table_exists() (in module disbi.db_utils), 29
DecimalField (class in disbi.disbimodels), 31
dependencies (disbi.migrations.0001_initial.Migration

attribute), 27
dictfetchall() (in module disbi.db_utils), 29
disbi (module), 27
disbi.admin (module), 28
disbi.apps (module), 28
disbi.cache_table (module), 29
disbi.db_utils (module), 29
disbi.disbimodels (module), 30
disbi.exceptions (module), 34
disbi.experiment_filter (module), 35
disbi.forms (module), 35
disbi.join (module), 36

49

DISBi Documentation, Release 0.0.2

disbi.migrations (module), 27
disbi.migrations.0001_initial (module), 27
disbi.models (module), 37
disbi.option_utils (module), 38
disbi.result (module), 39
disbi.templatetags (module), 27
disbi.templatetags.custom_filters (mod-

ule), 27
disbi.templatetags.custom_template_tags

(module), 28
disbi.utils (module), 40
disbi.validators (module), 42
disbi.views (module), 43
DisbiCalculateFoldChangeView (class in

disbi.views), 43
DisbiComparePlotView (class in disbi.views), 43
DisbiConfig (class in disbi.apps), 28
DisbiDataView (class in disbi.views), 43
DisbiDistributionPlotView (class in

disbi.views), 44
DisbiExperiment (class in disbi.models), 37
DisbiExperimentFilterView (class in

disbi.views), 44
DisbiExperimentMetaInfo (class in

disbi.models), 37
DisbiExperimentMetaInfo.Meta (class in

disbi.models), 38
DisbiExpInfoView (class in disbi.views), 44
DisbiGetTableData (class in disbi.views), 44
DisbiMeasurementAdmin (class in disbi.admin), 28
disbiresource_factory() (in module

disbi.admin), 28
drop_datatables() (in module disbi.cache_table),

29
DurationField (class in disbi.disbimodels), 31

E
ec_validator (in module disbi.validators), 42
EmailField (class in disbi.disbimodels), 31
EmptyCharField (class in disbi.disbimodels), 31
ExcludeOptions (class in disbi.disbimodels), 32
exec_query() (in module disbi.db_utils), 29
experiment (disbi.models.MeasurementModel at-

tribute), 38
experiment_id (disbi.models.MeasurementModel at-

tribute), 38
experiment_meta_model

(disbi.views.DisbiCalculateFoldChangeView
attribute), 43

experiment_meta_model
(disbi.views.DisbiComparePlotView attribute),
43

experiment_meta_model
(disbi.views.DisbiDataView attribute), 43

experiment_meta_model
(disbi.views.DisbiDistributionPlotView at-
tribute), 44

experiment_meta_model
(disbi.views.DisbiGetTableData attribute),
44

experiment_model (disbi.views.DisbiCalculateFoldChangeView
attribute), 43

experiment_model (disbi.views.DisbiComparePlotView
attribute), 43

experiment_model (disbi.views.DisbiDistributionPlotView
attribute), 44

experiment_model (disbi.views.DisbiExperimentFilterView
attribute), 44

experiment_model (disbi.views.DisbiExpInfoView
attribute), 44

F
FileField (class in disbi.disbimodels), 32
FilePathField (class in disbi.disbimodels), 32
filter_for_extended_form

(disbi.admin.DisbiMeasurementAdmin at-
tribute), 28

FloatField (class in disbi.disbimodels), 32
foldchange_form_factory() (in module

disbi.forms), 36
ForeignKey (class in disbi.disbimodels), 32
from_db() (in module disbi.db_utils), 29

G
GenericIPAddressField (class in

disbi.disbimodels), 32
get() (disbi.views.DisbiDataView method), 43
get() (disbi.views.DisbiExperimentFilterView method),

44
get() (disbi.views.DisbiGetTableData method), 44
get_choices() (in module disbi.utils), 41
get_colnames() (disbi.result.DataResult method),

40
get_columnnames() (in module disbi.db_utils), 30
get_display_name() (in module disbi.option_utils),

38
get_display_names() (disbi.result.DataResult

method), 40
get_exp_columns() (disbi.result.DataResult

method), 40
get_experiments_by_condition() (in module

disbi.experiment_filter), 35
get_field_query_name() (in module

disbi.db_utils), 30
get_fk_query_name() (in module disbi.db_utils),

30
get_foldchange() (disbi.result.DataResult

method), 40

50 Index

DISBi Documentation, Release 0.0.2

get_hr_val() (in module disbi.utils), 41
get_id_str() (in module disbi.utils), 41
get_ids() (in module disbi.utils), 41
get_item() (in module

disbi.templatetags.custom_filters), 27
get_item_by_idx() (in module

disbi.templatetags.custom_filters), 27
get_list() (in module

disbi.templatetags.custom_filters), 27
get_m2m_field() (in module disbi.db_utils), 30
get_models_of_superclass() (in module

disbi.option_utils), 38
get_notnull_column() (disbi.result.DataResult

method), 40
get_optgroups() (in module disbi.utils), 41
get_or_create_base_table()

(disbi.result.DataResult method), 40
get_pk_query_name() (in module disbi.db_utils),

30
get_related_metamodels() (disbi.join.Relations

method), 36
get_requested_experiments() (in module

disbi.experiment_filter), 35
get_show_columns() (disbi.result.DataResult

method), 40
get_table_names_by_pattern() (in module

disbi.cache_table), 29
get_unique() (in module disbi.utils), 41

I
id (disbi.models.Checksum attribute), 37
ImageField (class in disbi.disbimodels), 32
initial (disbi.migrations.0001_initial.Migration at-

tribute), 27
inline_factory() (in module disbi.admin), 28
IntegerField (class in disbi.disbimodels), 32
is_tree (disbi.join.Relations attribute), 36

L
list_filter (disbi.admin.DisbiMeasurementAdmin

attribute), 28
list_per_page (disbi.admin.DisbiMeasurementAdmin

attribute), 28
lookup_format() (in module

disbi.experiment_filter), 35

M
make_ChoiceField() (in module disbi.forms), 36
ManyToManyField (class in disbi.disbimodels), 33
MeasurementModel (class in disbi.models), 38
MeasurementModel.Meta (class in disbi.models),

38
media (disbi.admin.DisbiMeasurementAdmin attribute),

28

merge_dicts() (in module disbi.utils), 41
MetaModel (class in disbi.models), 38
MetaModel.Meta (class in disbi.models), 38
Migration (class in disbi.migrations.0001_initial), 27

N
name (disbi.apps.DisbiConfig attribute), 28
namedtuplefetchall() (in module disbi.db_utils),

30
nested_dict_as_table() (in module

disbi.templatetags.custom_template_tags),
28

NoRelatedMeasurementModel, 34
NotFoundError, 34
NotSupportedError, 34
NullBooleanField (class in disbi.disbimodels), 33

O
object_view() (in module disbi.utils), 42
objects (disbi.models.Checksum attribute), 37
OneToOneField (class in disbi.disbimodels), 33
operations (disbi.migrations.0001_initial.Migration

attribute), 27
Options (class in disbi.disbimodels), 33
ordereddictfetchall() (in module

disbi.db_utils), 30

P
PositiveIntegerField (class in

disbi.disbimodels), 33
PositiveSmallIntegerField (class in

disbi.disbimodels), 33
post() (disbi.views.DisbiCalculateFoldChangeView

method), 43
post() (disbi.views.DisbiComparePlotView method),

43
post() (disbi.views.DisbiDistributionPlotView

method), 44
post() (disbi.views.DisbiExperimentFilterView

method), 44
post() (disbi.views.DisbiExpInfoView method), 44
print_none() (in module

disbi.templatetags.custom_template_tags),
28

proxy (disbi.models.DisbiExperimentMetaInfo.Meta at-
tribute), 38

Python Enhancement Proposals
PEP 8, 20

R
reconstruct_backbone_table() (in module

disbi.cache_table), 29
Relations (class in disbi.join), 36

Index 51

DISBi Documentation, Release 0.0.2

RelationshipOptions (class in disbi.disbimodels),
33

remove_optgroups() (in module disbi.utils), 42
result_view() (disbi.models.DisbiExperiment

method), 37
reverse_dict() (in module disbi.utils), 42

S
short_ec_validator (in module disbi.validators),

42
SlugField (class in disbi.disbimodels), 33
SmallIntegerField (class in disbi.disbimodels), 34
sort_by_other() (in module disbi.utils), 42
start_join() (disbi.join.Relations method), 37

T
table_name (disbi.models.Checksum attribute), 37
TextField (class in disbi.disbimodels), 34
TimeField (class in disbi.disbimodels), 34

U
URLField (class in disbi.disbimodels), 34
UUIDField (class in disbi.disbimodels), 34

V
validate_flux() (in module disbi.validators), 42
validate_probabilty() (in module

disbi.validators), 42
view() (disbi.models.DisbiExperiment method), 37

W
wrap_in_func() (disbi.result.DataResult method),

40

Z
zip_dicts() (in module disbi.utils), 42

52 Index

	Setting up Django
	Setting up a virtual environment
	Setting up the database

	Setting up a DISBi App
	Installation and Configuration
	Using the DISBi framework

	Setting up the production environment
	Going into production with Docker (recommended)
	Going into production with Apache

	Contributing
	Design Goals
	Style Guide

	Using the Filter View
	Using the Data View
	Using the Admin interface
	Uploading data for BiologicalModels
	Uploading data for MeasurementModels

	disbi package
	Subpackages
	Submodules

	Python Module Index
	Index

